今天为您带来第十集《北斗巡天》,看北斗卫星导航系统如何在交通运输、农业生产、防灾减灾、生态保护等方面助力中国产业升级。
古代依靠北斗星判断大致方向和计算时间。如今依靠由中国航天科技集团开发的北斗卫星实现精确时空定位。中国人实现从仰望星空到经略时空的跨越。
广西梧州西江,珠江水系的主通道。长洲水利工程修建后,上下游水面落差较大,来往游船需通过船闸到水坝对面,现在,通过手机客户端,每艘船仅需50秒完成报到和缴费手续。
在北斗卫星帮助下,西江船闸运行调度中心,可以实时掌握每艘船的位置。船与船闸的配合,船长与调度中心的呼应,精准对接、一气呵成。在保证船只过闸安全性的同时,通行效率也大大提高。
上海市精确导航和自动驾驶能够解决交通拥堵、减少交通事故。但需要北斗实时定位精度,必须达到厘米级。智能网联汽车要实现高等级自动驾驶,对于定位精度有着厘米级的要求。
北斗卫星的地基增强站,作用是提升北斗卫星信号的精度和稳定性。它们与卫星天地协同,满足国土测绘、精准农业、自动驾驶等众多需求。
新疆喀什拖拉机安装北斗定位导航,可以真正实现无人自动驾驶。北斗导航系统让播种机实现无人驾驶以及不分昼夜全天干活。
广西 河池天峨县龙滩水电站,国家西部大开发标志性工程之一,“西电东送”重要组成部分。北斗三号卫星导航系统建成后,这里第一时间安装北斗自动化监测设备,大大减少了人工测量的工作量。
北斗系统大幅提升位置服务能力,从米级提高到分米级、厘米级、毫米级,给数字信息社会提供精准时空信息,更准确地为社会提供服务。
湖北武汉北斗能够实现精确的定位、导航,因其卫星上有一块特殊的“表”,名叫星载原子钟。卫星导航利用无线电波传播来导航,无线电波以光速传播,要达到一米的测量精度,就要把光传播一米的时间测准,这只能靠原子钟。
北斗三号卫星,全部装载国产高精度星载原子钟,保证北斗优于20纳秒的授时精度。金融交易中,时间决定着资金的安全。北斗高精度授时,为金融系统提供精确的时间安全保障。
福建 莆田湄洲岛茫茫大海中手机没有信号。准确的位置对于救援十分关键,海防大队收到一条紧急求救的短报文信息,它类似于手机短信,但却是由北斗卫星发送的。
渔业是北斗卫星导航系统应用最早,也最为广泛的行业之一。短报文是中国北斗的独门秘技。赤潮被称为“有害藻类”或“红色幽灵”,为了实时掌握赤潮的发生时间、位置和规模,技术人员结合北斗定位技术,研发出船载的赤潮检测系统,为赤潮的早期防控提供有效预警。
在中国科学家们的攻关下,普通智能手机也能给北斗卫星发送短报文。采用国产自主可控工艺制造,支持短报文通信的国产智能手机已经推出。
今天中国北斗已具备实时厘米级、事后毫米级的高精度定位能力。中国北斗的行业应用不断深化,应用场景更加丰富。中国北斗面向全球用户提供全天候、全天时、高精度服务。
《大国基石》首批播出13集,包括《气蕴华夏》《城市绿心》《追风逐日》《聚能动力》《智连未来》《绿电动脉》《海上天路》《强国之翼》《乌金奇迹》《北斗巡天》《天河筑梦》《一江碧水》《化生万物》等。
12月28日起,《大国基石》每天18:20在央视综合频道CCTV-1播出,敬请收看!
———— /END/ ————
2022中国农业科学十大进展发布 “基因”成高频词******
光明网讯(记者宋雅娟)12月16日,2022中国农业农村科技发展高峰论坛暨中国现代农业发展论坛在北京召开。论坛上发布了《2022中国农业科学重大进展》报告,该报告由中国农业科学院科技管理局和农业信息研究所科技情报分析与评估创新团队研制,遴选了10项能够充分代表2021年我国农业科技前沿研究水平、取得重大突破性进展的基础科学研究成果。
10项重大进展具体如下:
1.首次实现异源四倍体野生稻的从头驯化。提出异源四倍体野生稻快速从头驯化的新策略,突破了多倍体野生稻参考基因组绘制、遗传转化以及基因组编辑等技术瓶颈,建立了从头驯化技术体系;证明了异源四倍体野生稻快速从头驯化策略切实可行,对创制高产抗逆新型作物和保障粮食安全具有重要意义。
2.解析水稻品种适应土壤肥力的遗传基础。该研究鉴定到一个水稻氮高效关键基因(OsTCP19),阐明了土壤氮素水平调控水稻分蘖发育过程的分子机理,揭示了水稻对贫瘠土壤适应的遗传基础;为水稻氮高效育种提供了重大关键基因,对保障农业绿色发展具有重要意义。
3.首次绘制黑麦高精细物理图谱。该研究解决了黑麦基因组组装难题,绘制了黑麦高精细物理图谱,解析了黑麦染色体演化机制,鉴定了黑麦籽粒淀粉合成、抽穗期等关键基因;为麦类作物育种源头创新提供了独特基因资源。
4.实现杂交马铃薯基因组设计育种。该研究利用基因组大数据进行育种决策,建立杂交马铃薯基因组设计育种体系,培育了第一代高纯合度自交系和概念性杂交种“优薯1号”;证明了马铃薯杂交种子种植的可行性,推动了马铃薯育种和繁殖方式变革。
5.构建规模最大的猪肠道微生物基因组集。该研究通过对猪500个肠道样本开展深度宏基因组测序,并整合了已有的猪肠道菌群基因组,构建了规模最为宏大的猪肠道微生物基因组集;为猪强抗逆性、高生长速度、高饲料转化相关菌种挖掘和利用提供了重要资源。
6、揭示抗病小体激活植物免疫机制。该研究发现ZAR1抗病小体的钙离子通道功能,建立了钙信号与植物细胞死亡的联系,揭示了一种全新的植物免疫受体作用机制;为人工设计广谱、持久的新型抗病蛋白进而发展绿色农业带来了新启示。
7.揭示超级害虫烟粉虱多食性奥秘。该研究首次发现植物和动物之间存在功能性水平基因转移现象,揭示了烟粉虱“偷盗”寄主植物解毒基因,解析了广泛寄主适应性的分子机制;发现了昆虫多食性的奥秘,为害虫绿色防控提供了全新思路。
8.揭示光信号调控大豆共生结瘤机制。该研究解析了地上光信号与地下共生信号互作调控大豆根瘤发育的机制,证实了光信号对大豆根瘤形成及共生固氮的关键作用;揭示了豆科植物地上地下协同的新机制,为优化农业系统碳-氮平衡提供新策略。
9.首次实现二氧化碳到淀粉的人工合成。该研究设计了化学和酶耦合催化的人工淀粉合成途径,实现了不依赖植物光合作用的二氧化碳到淀粉的人工全合成;使工业化车间制造淀粉成为可能,为实现“双碳”和粮食安全战略提供全新解决思路。
10.揭示脊椎动物水生到陆生的演化遗传机制。该研究鉴定到脊椎动物肺、心脏及四肢等器官的遗传变异与陆生适应有关,系统解析了脊椎动物在早期登陆过程中的遗传演化机制;揭示了脊椎动物从水生到陆生演化的遗传奥秘,为理解脊椎动物水生到陆生的演化提供了关键认知。
(文图:赵筱尘 巫邓炎)